23 research outputs found

    A rapid protocol for ribosome profiling of low input samples.

    Get PDF
    Ribosome profiling provides quantitative, comprehensive, and high-resolution snapshots of cellular translation by the high-throughput sequencing of short mRNA fragments that are protected by ribosomes from nucleolytic digestion. While the overall principle is simple, the workflow of ribosome profiling experiments is complex and challenging, and typically requires large amounts of sample, limiting its broad applicability. Here, we present a new protocol for ultra-rapid ribosome profiling from low-input samples. It features a robust strategy for sequencing library preparation within one day that employs solid phase purification of reaction intermediates, allowing to reduce the input to as little as 0.1 pmol of ∼30 nt RNA fragments. Hence, it is particularly suited for the analyses of small samples or targeted ribosome profiling. Its high sensitivity and its ease of implementation will foster the generation of higher quality data from small samples, which opens new opportunities in applying ribosome profiling

    Investigating the Prevalence of RNA-Binding Metabolic Enzymes in E. coli

    Get PDF
    An open research field in cellular regulation is the assumed crosstalk between RNAs, metabolic enzymes, and metabolites, also known as the REM hypothesis. High-throughput assays have produced extensive interactome data with metabolic enzymes frequently found as hits, but only a few examples have been biochemically validated, with deficits especially in prokaryotes. Therefore, we rationally selected nineteen Escherichia coli enzymes from such datasets and examined their ability to bind RNAs using two complementary methods, iCLIP and SELEX. Found interactions were validated by EMSA and other methods. For most of the candidates, we observed no RNA binding (12/19) or a rather unspecific binding (5/19). Two of the candidates, namely glutamate-5-kinase (ProB) and quinone oxidoreductase (QorA), displayed specific and previously unknown binding to distinct RNAs. We concentrated on the interaction of QorA to the mRNA of yffO, a grounded prophage gene, which could be validated by EMSA and MST. Because the physiological function of both partners is not known, the biological relevance of this interaction remains elusive. Furthermore, we found novel RNA targets for the MS2 phage coat protein that served us as control. Our results indicate that RNA binding of metabolic enzymes in procaryotes is less frequent than suggested by the results of high-throughput studies, but does occur

    Targeted escape of SARS-CoV-2 in vitro from monoclonal antibody S309, the precursor of sotrovimab

    Get PDF
    Class 1 and 2 monoclonal antibodies inhibit SARS-CoV-2 entry by blocking the interaction of the viral receptor-binding domain with angiotensin-converting enzyme 2 (ACE2), while class 3 antibodies target a highly conserved epitope outside the ACE2 binding site. We aimed to investigate the plasticity of the spike protein by propagating wild-type SARS-CoV-2 in the presence of class 3 antibody S309. After 12 weeks, we obtained a viral strain that was completely resistant to inhibition by S309, due to successively evolving amino acid exchanges R346S and P337L located in the paratope of S309. The antibody lost affinity to receptor-binding domains carrying P337L or both amino acid exchanges, while ACE2 binding was not affected. The resistant strain replicated efficiently in human CaCo-2 cells and was more susceptible to inhibition of fusion than the original strain. Overall, SARS-CoV-2 escaped inhibition by class 3 antibody S309 through a slow, but targeted evolution enabling immune escape and altering cell entry. This immune-driven enhancement of infectivity and pathogenicity could play an important role in the future evolution of SARSCoV-2, which is under increasing immunological pressure from vaccination and previous infections

    Insights into the evolutionary conserved regulation of Rio ATPase activity

    Get PDF
    Department of Biochemistry III ‘House of the Ribosome’ and by the DFG Collaborative Research Center [SFB960-AP1] ‘Ribosome formation: principles of RNP biogenesis and control of their function’ (to S.F.-C.).; Work in the MacNeill laboratory was funded by Forskningsrådet for Natur og Univers (FNU) [sagsnr. 272-05-0446]; Scottish Universities Life Sciences Alliance (SULSA); Research in the Medenbach laboratory is supported by the Bavarian Research Network for Molecular Biosystems (BioSysNet); German Research Foundation (DFG) [ME4238/1-1]; DFG Collaborative Research Center [SFB960-B11] ‘Ribosome formation: principles of RNP biogenesis and control of their function’; German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept [01ZX1401D]; Work in the Siebers laboratory was funded by a grant from the German Science Foundation (DFG) [SI642/10-1] from the Federal Ministry of Education and Research (BMBF) [0316188A]; Work in the LaRonde laboratory was funded by National Science Foundation [MCB0953493]; Publishing of this work was supported by the German Research Foundation (DFG) within the funding program Open Access Publishing. Funding for open access charge: DFG—Open Access program.Eukaryotic ribosome biogenesis is a complex dynamic process which requires the action of numerous ribosome assembly factors. Among them, the eukaryotic Rio protein family members (Rio1, Rio2 and Rio3) belong to an ancient conserved atypical protein kinase/ ATPase family required for the maturation of the small ribosomal subunit (SSU). Recent structure-function analyses suggested an ATPase-dependent role of the Rio proteins to regulate their dynamic association with the nascent pre-SSU. However, the evolutionary origin of this feature and the detailed molecular mechanism that allows controlled activation of the catalytic activity remained to be determined. In this work we provide functional evidence showing a conserved role of the archaeal Rio proteins for the synthesis of the SSU in archaea. Moreover, we unravel a conserved RNA-dependent regulation of the Rio ATPases, which in the case of Rio2 involves, at least, helix 30 of the SSU rRNA and the P-loop lysine within the shared RIO domain. Together, our study suggests a ribosomal RNA-mediated regulatory mechanism enabling the appropriate stimulation of Rio2 catalytic activity and subsequent release of Rio2 from the nascent pre- 40S particle. Based on our findings we propose a unified release mechanism for the Rio proteins.Publisher PDFPeer reviewe

    Molecular insights into RNA recognition and gene regulation by the TRIM-NHL protein Mei-P26

    Get PDF
    The TRIM-NHL protein Meiotic P26 (Mei-P26) acts as a regulator of cell fate in Drosophila. Its activity is critical for ovarian germline stem cell maintenance, differentiation of oocytes, and spermatogenesis. Mei-P26 functions as a post-transcriptional regulator of gene expression; however, the molecular details of how its NHL domain selectively recognizes and regulates its mRNA targets have remained elusive. Here, we present the crystal structure of the Mei-P26 NHL domain at 1.6 Ã… resolution and identify key amino acids that confer substrate specificity and distinguish Mei-P26 from closely related TRIM-NHL proteins. Furthermore, we identify mRNA targets of Mei-P26 in cultured Drosophila cells and show that Mei-P26 can act as either a repressor or activator of gene expression on different RNA targets. Our work reveals the molecular basis of RNA recognition by Mei-P26 and the fundamental functional differences between otherwise very similar TRIM-NHL proteins

    Stress macht Zellen resistent gegen Folsäure-basierte Chemotherapeutika

    Get PDF
    The unfolded protein response (UPR), a cellular stress response pathway, is broadly implicated in disease and resistance to therapy. The molecular mechanisms that drive stress-mediated chemoresistance are, however, only poorly understood. We have employed a multiomics approach to determine UPR-induced gene regulation, revealing the UPR regulon. We further observe metabolic rewiring upon stress and resistance to Methotrexate, a widely-employed therapeutic reagent. The precise molecular characterization of the pathway driving resistance might lead to novel concepts in cancer therapy

    Translational Control via Protein-Regulated Upstream Open Reading Frames

    Get PDF
    SummaryAnalysis of the regulation of msl-2 mRNA by Sex lethal (SXL), which is critical for dosage compensation in Drosophila, has uncovered a mode of translational control based on common 5′ untranslated region elements, upstream open reading frames (uORFs), and interaction sites for RNA-binding proteins. We show that SXL binding downstream of a short uORF imposes a strong negative effect on major reading frame translation. The underlying mechanism involves increasing initiation of scanning ribosomes at the uORF and augmenting its impediment to downstream translation. Our analyses reveal that SXL exerts its effect controlling initiation, not elongation or termination, at the uORF. Probing the generality of the underlying mechanism, we show that the regulatory module that we define experimentally functions in a heterologous context, and we identify natural Drosophila mRNAs that are regulated via this module. We propose that protein-regulated uORFs constitute a systematic principle for the regulation of protein synthesis

    3′-cyclic phosphorylation of U6 snRNA leads to recruitment of recycling factor p110 through LSm proteins

    No full text
    Pre-mRNA splicing proceeds through assembly of the spliceosome complex, catalysis, and recycling. During each cycle the U4/U6.U5 tri-snRNP is disrupted and U4/U6 snRNA base-pairing unwound, releasing separate post-spliceosomal U4, U5, and U6 snRNPs, which have to be recycled to the splicing-competent tri-snRNP. Previous work implicated p110—the human ortholog of the yeast Prp24 protein—and the LSm2-8 proteins of the U6 snRNP in U4/U6 recycling. Here we show in vitro that these proteins bind synergistically to U6 snRNA: Both purified and recombinant LSm2-8 proteins are able to recruit p110 protein to U6 snRNA via interaction with the highly conserved C-terminal region of p110. Furthermore, the presence of a 2′,3′-cyclic phosphate enhances the affinity of U6 snRNA for the LSm2-8 proteins and inversely reduces La protein binding, suggesting a direct role of the 3′-terminal phosphorylation in RNP remodeling during U6 biogenesis

    Drosophila Sister-of-Sex-lethal is a repressor of translation

    No full text
    The RNA-binding protein Sex-lethal (Sxl) is an important post-transcriptional regulator of sex determination and dosage compensation in female Drosophila. To prevent the assembly of the MSL dosage compensation complex in female flies, Sxl acts as a repressor of male-specific lethal-2 (msl-2) mRNA translation. It uses two distinct and mutually reinforcing blocks to translation that operate on the 5' and 3' untranslated regions (UTRs) of msl-2 mRNA, respectively. While 5' UTR-mediated translational control involves an upstream open reading frame, 3' UTR-mediated regulation strictly requires the co-repressor protein Upstream of N-ras (Unr), which is recruited to the transcript by Sxl. We have identified the protein Sister-of-Sex-lethal (Ssx) as a novel repressor of translation with Sxl-like activity. Both proteins have a comparable RNA-binding specificity and can associate with uracil-rich RNA regulatory elements present in msl-2 mRNA. Moreover, both repress translation when bound to the 5' UTR of msl-2. However, Ssx is inactive in 3' UTR-mediated regulation, as it cannot engage the co-repressor protein Unr. The difference in activity maps to the first RNA-recognition motif (RRM) of Ssx. Conversion of three amino acids within this domain into their Sxl counterpart results in a gain of function and repression via the 3' UTR, allowing detailed insights into the evolutionary origin of the two proteins and into the molecular requirements of an important translation regulatory pathway

    RNA-Seq analysis in mutant zebrafish reveals role of U1C protein in alternative splicing regulation

    No full text
    The U1 snRNP particle contains three U1-specific proteins, including U1C, and is involved in 5' splice-site recognition during spliceosome assembly. Here, RNA-Seq analysis of a zebrafish U1C null mutant identifies a gene-specific role for U1C in regulating alternative splicing
    corecore